批准立项年份	2008
通过验收年份	2012

国家级实验教学示范中心年度报告

(2022年1月1日——2022年12月31日)

示范中心名称: 材料科学与工程国家级实验教学示范中心(四川大学)

示范中心主任: 赵长生

示范中心联系人及联系电话: 周天楠 / 13880918925

所在学校名称:四川大学

所在学校联系人及联系电话: 何柳/028-85405143

2023年5月30日填报

1

批准立项年份	2008
通过验收年份	2012

国家级实验教学示范中心年度报告

(2022年1月1日——2022年12月31日)

示范中心名称: 材料科学与工程国家级实验教学示范中心(四川大学)

示范中心主任: 赵长生

示范中心联系人及联系电话:周天楠/13880918925

所在学校名称:四川大学

所在学校联系人及联系电话: 何柳/028-85405143

2023年5月30日填报

第一部分年度报告编写提纲(限 3000 字以内)

一、人才培养工作和成效

(一) 人才培养基本情况

1.面向全校的跨学科本科实验教学公共平台

中心是我校跨2个学院3个专业、覆盖全校材料及相关学科的本科实验教学平台,是培养创新创业人才和卓越工程师的重要基地,为本科生专业实验教学、创新实验项目、毕业论文(设计)及科研训练提供实验条件支撑。

2.实验教学场地及资源

中心有 8 个实验室,面积约 5600m²。由于专业合并及教学计划调整,中心实验课程项目资源总数 101 个,本科教学实验课程 10 门,涵盖实验项目 88 个。

3.年度实验教学

2022年完成3个专业1147名本科生专业基础实验教学和专业实验教学,共92016人学时。

序号	面向的	学生人数	人时数	
かる	专业名称	子生八致		
1	材料科学与工程	2019 级、2020 级	346	39001
2	新能源材料与器件	2018 级、2019 级、2020 级	201	5677
3	高分子科学与工程	2019 级、2020 级	600	47338
合计			1147	92016

表1示范中心实验教学面向专业及学生情况

(二) 人才培养成效评价等

通过对历年教学目标达成度考核,以及学生评教结果显示,实验教学效果良好,学生反馈能够达到教学目标的要求。

2022年中心支持365名本科生参加创新实验计划120项,其中,国家级16项,省级13项,校院级91项。

1.本科生 24 人获国家级大赛奖

- (1) 第十届中国大学生高分子材料创新创业大赛全国特等奖: 严悦、陈玲丽、闫敬越。
- (2) 第八届中国国际"互联网+"大学生创新创业大赛全国金奖 奖: 陈鹏、章嘉豪、徐启明、向培劼。
- (3) 第八届中国国际"互联网+"大学生创新创业大赛产业赛 道国家级金奖: 裴子凡、朱景伟、姜伊婷、崔光垚、贺锐。
- (4) 第十一届全国大学生金相技能大赛全国一等奖: 刘妍君; 二等奖: 杨洲; 三等奖: 缪思成, 田舒鹏。
- (5)"六百光年杯"第十五届全国大学生节能减排社会实践与科技竞赛全国三等奖:莫雅婷、郑怡然、杨乐、朱家园。
- (6) 中国大学生机械工程创新创意-材料热处理创新创业赛全国二等奖: 荣川、周丽、赵晓亮、沙逢源。

2. 引进高端青年人才开设高分子前沿开放实验

引入高端青年人才加入实验教学队伍,将思维新、知识新、结构新的实验项目充实到实验实践教学体系中。由示范中心牵头开设高分子前沿开放实验课程。

	高分子前沿开放实验课程清单
序号	实验项目名称
1	电子领域用聚酰亚胺薄膜的制备及性能表征
2	多孔聚合物一共价有机框架的合成及表征
3	利用牵引力显微镜技术探测细胞的力
4	高性能苯并噁嗪树脂的合成及碳纤维复合材料的制备
5	高能量密度纤维电极挤出成型及性能表征
6	金属-有机配位聚合物的微纳米形貌调控及电解水催化实验
7	聚合物太阳能电池的制备与性能表征实验
8	共轭框架高分子材料的合成、表征及生物医学应用
9	智能医用水凝胶的制备及性能表征
10	智能弹性体材料的合成、共混改性和表征
11	寡氢共轭微孔聚合物的合成及其电催化应用研究
12	仿生高分子材料的制备与应用
13	模板-破壳法制备凝胶微球及性能表征
14	柔性多功能传感器的加工制备与应用展示
15	注塑制品的多层次结构调控及计算机模拟
16	聚乙烯醇湿法纺丝加工成型实验
17	表面诱导高分子结晶及性能研究
18	复合吸波涂层的合成、制备及服役性能评价
19	自供能纤维织物的仿生设计及发电实验
20	具有基底普适性的抗菌高分子涂层的制备及表征

图 1. 高分子前沿开放实验课程清单

二、人才队伍建设

(一) 队伍建设基本情况

中心主任赵长生教授,博士生导师,主持并主讲国家精品课程《材料科学与工程基础》,现为国家级实验教学示范中心联席会材料/纺织服装学科组组长。

中心师资队伍现有固定人员 63 人,其中教授和研究员 33 人, 副教授和高级工程师及高级实验师 15 人,讲师、工程师及实验师共 11 人,特聘研究员和特聘副研究员 4 人。

(二) 队伍建设的举措与取得的成绩等

1.实验技术与管理队伍培训学习

2022 年派出 1 名教师赴南丹麦大学出国访学,培训提升实验技能及管理业务水平。

2.引进高学历人才

2022年退休1名教师,补增实验管理岗位副高职称教师1名。

三、教学改革与科学研究

(一) 教学改革立项、进展、完成情况

1.获批省部级教改项目及校级项目

教育部第二批新工科研究与实践项目1项。

四川省高等教育人才培养质量和教学改革项目1项。

四川大学新世纪高等教育教学改革工程(第九期)研究项目 3 项。

申请校级实验技术立项 5 项,大创指导项目 1 项。发表教育教改论文 2 篇。

2.获得第六届中国石油和化工教育教学奖: 2项

第六届中国石油和化工教育教学优秀教材二等奖:《生物医药高分子材料》。

第六届中国石油和化工教育教学成果奖一等奖: 冉蓉、傅强、 丁明明、杨昌跃、秦家强、孙小蓉。

3. 四川大学 2021 年课程思政榜样课程: 4门

四川大学 2021 年课程思政榜样课程 4 门:《高分子化学(I)》.

《高分子物理(I)》,《高分子材料成型加工基础(双语)》,《材料科学与工程基础(双语)》。

4.出版专著1部

《电子陶瓷材料与器件》, 吴家刚, 化学工业出版社, 2022。

5.获得省级教学成果奖3项,行业内及校级成果奖6项。

点赞!特等奖8项,一等奖18项!

大川 四川大学 2022-04-13 15:15

近日,四川省教育厅公布了2021年省教学成果奖获奖名单,高等教育共评选出350项教学成果,四川大学喜获55项。其中,以第一完成单位获特等奖8项、一等奖18项、二等奖27项,与兄弟高校合作完成一等奖1项、二等奖1项,获奖数量位列全省高校第一。

项目名称	完成人员	所愿单	奖质
"厚基础、强实践、宽视野"的材料类一流本科人才培养体系重塑和 实践	刘颖、朱建国、叶全文、黄 维刚、杨为中、吴朝玲、吴 家刚、张云、王泽高	四川大学	特 等 奖
以 OBE 理念为基础的高分子专业 创新创业拔尖人才培养模式探索与 实践	赵长生、木肖玉、徐源廷、 唐顷超、辛振祥、冉蓉、冉 起超、孙树东、邱遗、赵伟 锋	四学东大学岛大学 五大学 五大学 五十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	一等奖
医工融合跨界人才"五维五贯"双 创教育模式的创新与实践	尹光福、张兴栋、林江莉、 王云兵、杨为中、苟立、樊 渝江、赵伟锋、蒲曦鸣、陈 艳雯	四学国材会川物工会八字国材会川物学四生学学	一等奖

图 2. 省级教学成果奖

(二) 科学研究情况

1.以科研促教学,强化本科生科研能力、实践能力培养

2022 年度中心坚持以科研促教学,支持本科生以共同第一作者 及其他作者发表 SCI 等论文 15 篇。

2.中心科研实力稳步提升

2022年度中心成员发表研究论文 120篇, 授权发明专利 40项。出版专著 1 部。

四、信息化建设、开放运行和示范辐射

(一) 信息化资源、平台建设, 人员信息化能力提升等情况

2022 年度持续更新材料科学与工程国家级实验教学示范中心(四川大学)的网页,保障疫情期间网上宣传作用。平台以良好的管理和服务工作,使设备开放共享率继续扩大,共服务 388 个课题组 3152 位学生、教师。

2022 年持续进行新工科材料学科实验教学平台建设,改善实验教学环境和设备。新增大精贵设备如电子万能拉力试验机,差示扫描量热仪,热失重分析仪。

图 3. 电子万能拉力试验机、热重分析仪

(二) 开放运行、安全运行等情况

设备运行使用 12.4 万机时,测试样品数 18.4 万个,共享单位 55个,共享课题组增加至 388个,服务本科生、研究生 6000 多人次。

2022 年持续实验室安全建设,购置和更换日常消防工具、器械、医疗急救药品物资。2022 进行消防演习和消防培训工作 2 次,每周对实验室安全检查并定期发布报告,对学生进行安全教育 2230 多人次、继续保持安全零事故。

(三) 交流合作、发挥示范引领等情况。

中央电视台全国双创大赛双创视频拍摄宣传,累计拍摄四天,拍摄实验室6间,对实验中心起到宣传示范的作用。

图 4. 央视拍摄现场

合作交流培训的情况:

- (1) 大型贵重仪器设备8台套,72人次培训。
- (2) 高校实验室防爆知识专项培训1人。
- (3) 教育部 2022 年高校实验室安全工作视频培训会 2人。
- (4) 2022 年网络安全教育培训 5 人次。
- (5) 2022 年四川省新冠疫情防控工作培训 5人次。
- (6) 2022 年辐射安全培训及考试 2 人次。

五、示范中心大事记

- (1) 2022 年学院注重创新创业教育,申报并获批四川大学创新创业教育分中心。
- (2) 材料科学与工程国家级实验教学示范中心(四川大学)于2022年12月14日召开教学指导委员2022年线上线下工作会议,会议由示范中心主任赵长生教授主持,深入讨论:围绕"四个面向"结合国家重大需求,发挥实验中心作用培养材料类拔尖人才,进一

步推进和完善设备共享制度;在实验教学教材建设方面应充分展开 多校企合作并进行资源整合和优势共享,充分发挥本中心的教学示 范和引领作用。

图 5. 教指委会议现场

六、示范中心存在的主要问题

材料科学与工程国家级实验教学示范中心(四川大学)作为国家 级实验教学示范中心建设单位,通过不断建设,在实验教学体系, 实验场地环境,设备条件,师资队伍等方面都取得了较大的进步, 但存在一些不足有待进一步提高,主要有如下几个方面:

- (1) 加强近几年新进高学历人才的培养和发展,增加新进教师专业技术能力,增强职称晋升实力。
- (2)继续增加实验实践类、实验安全类教材和虚拟仿真实验项目的建设。
- (3) 提高新进仪器使用效率,进一步提高预约共享平台辐射范围,提升社会服务工作水平。
- (4) 通过实验安全课程授课进一步提高学生安全意识, 规范学生的安全操作规范, 紧抓安全建设不放松。

七、所在学校与学校上级主管部门的支持

学校高度重视中心发展,在政策面、师资队伍建设、经费等方面均给予了大力支持,以保证中心在人才培养、实验教学、社会服务中的先进性、示范性。

(一) 人才队伍建设

- (1) 2022 年退休 1 名教师,补增实验管理岗位副高职称教师 1 名。
- (2) 注重教师队伍建设,通过试讲、实验技术能力培训、实验技术立项等措施培养新进教职工的业务能力。

(二) 经费支持、管理政策保障

(1) 2022 年对中心投入建设经费 1641 万元,用于购置设备、实验环境改造、教学改革、学科竞赛等方面,给予示范中心有力支持保障。

表 2 示范中心经费使用情况

经费使用情况	金额 (万元)
设备维护维修日常运行费	201
实验设备购置	582
实验环境改造	524
大创和学科竞赛	53
实习经费	121
教学改革经费	86
课程建设及运行费	74
合计	1641

(2) 支持中心老师立项实验教改项目、创新创意项目、虚拟仿真实验项目共6项。

第二部分示范中心数据

(数据采集时间为 2022年1月1日至12月31日)

一、示范中心基本情况

示范中心	心名称	材料科学与工程国家级实验教学示范中心(四川大学)						
所在学校	交名称	四川大学	四川大学					
主管部门]名称	教育部						
示范中心门]户网址	http://mse.la	http://mse.lab.scu.edu.cn/					
示范中心证	羊细地址		市一环路南一段 大学望江校区	邮政编码	610065			
固定资产	^注 情况							
建筑面积	5600m ²	设备总值	10088.69万 元	设备台数	1843 台			
经费投入	\情况							
主管部门年度经费 投入 (直属高校不填)			所在学校年度经费投入		1641万元			

注:(1)表中所有名称都必须填写全称。(2)主管部门:所在学校的上级主管部门,可查询教育部发展规划司全国高等学校名单。

二、人才队伍基本情况

(一) 本年度固定人员情况

序号	姓名	性别	出生 年份	职称	职务	工作 性质	学位	备注
1	赵长生	男	1970	正高级	主任	管理	博士	博士生导师 2005 年 6 月
2	冉蓉	女	1968	正高级	副主 任	管理	博士	博士生导师 2012 年 5 月
3	吴家刚	男	1979	正高级	副主 任	管理	博士	博士生导师 2015 年 6 月
4	秦家强	男	1977	正高级		管理	博士	博士生导师 2020 年 6 月
5	余萍	女	1968	正高级		管理	博士	
6	杨昌跃	男	1967	副高级		技术	学士	
7	倪海鹰	女	1969	副高级		技术	学士	
8	杜荣昵	女	1963	副高级		技术	学士	
9	周天楠	女	1985	副高级		技术	博士	
10	李晓瑜	女	1990	副高级		技术	博士	
11	何超	男	1990	副高级		技术	博士	
12	张明华	男	1985	中级		技术	博士	
13	田晨旭	女	1988	中级		技术	硕士	
14	袁丹丹	女	1987	中级		技术	博士	
15	孙小蓉	女	1994	中级		技术	博士	
16	张小山	男	1986	中级		技术	博士	
17	杜跃兵	男	1969	中级		技术	学士	
18	张蓉	女	1974	中级		技术	学士	
19	程奎	男	1972	中级		技术	硕士	
20	赵凌	女	1976	中级		技术	硕士	
21	王文武	男	1981	中级		技术	博士	
22	彭坚	男	1964	中级		技术	学士	
23	傅强	男	1963	正高级		管理	博士	博士生导师 1999 年 6 月
24	刘颖	男	1965	正高级		管理	博士	博士生导师
25	蔡绪福	男	1964	正高级		教学	博士	博士生导师 2013 年 12 月
26	杨鸣波	男	1957	正高级		教学	博士	博士生导师 2000 年 6 月
27	李乙文	男	1986	正高级		教学	博士	博士生导师 2017 年 7 月
28	杨伟	男	1976	正高级		研究	博士	博士生导师 2010 年
29	李忠明	男	1969	正高级		教学	博士	博士生导师 2005 年
30	张杰	男	1967	正高级		教学	博士	博士生导师

							2009年6月
							博士生导师
31	丁明明	男	1983	正高级	教学	博士	2018年6月
				 			博士生导师
32	刘向阳	男	1969	正高级	研究	博士	2010 年
							博士生导师
33	邓华	男	1981	正高级	研究	博士	2015年12月
							博士生导师
34	王柯	男	1978	正高级	研究	博士	2012年5月
							博士生导师
35	陈枫	男	1970	正高级	研究	博士	2012年5月
							博士生导师
36	李建树	男	1976	正高级	研究	博士	2012年5月
							博士生导师
37	刘习奎	男	1970	正高级	研究	博士	, , , , , , , , , , , , , , , , , , , ,
							2013年12月
38	黄亚江	男	1978	正高级	研究	博士	博士生导师 2015 年 12 月
39	李光宪	男	1955	正高级	研究	博士	博士生导师
							1996年
40	罗祥林	女	1962	正高级	研究	博士	博士生导师
							2005年
41	赵伟锋	男	1987	正高级	教学	博士	博士生导师
10	-D -H+ -H+	,	1055	T - 17	±1. W	1-15- 1	2019年7月
42	武莉莉	女	1977	正高级	教学	博士	博士生导师
43	姚亚东	男	1963	正高级	教学	博士	
44	黎兵	男	1970	正高级	教学	博士	博士生导师
							2013年6月
45	张云	男	1968	正高级	研究	博士	博士生导师
46	张静全	男	1970	正高级	研究	博士	博士生导师
47	吴昊	男	1981	正高级	研究	博士	博士生导师
41	大大	N	1301	止问级	1917L	份工	2020年6月
48	叶金文	男	1976	正高级	研究	博士	博士生导师
40	円並又	カ	1970	上 回 级	191 7L	円 工	2018年6月
49	佐大尹	男	1985	工 宣加	孤宏	+ 土	博士生导师
49	施奇武	为	1900	正高级	研究	博士	2021年6月
F0	++ itk <i>t</i> -\(\foats	Ħ	1000	工	TIT 宏	1 #1	博士生导师
50	林紫锋	男	1986	正高级	研究	博士	2020年6月
51	张萍	女	1965	副高级	研究	硕士	
52	陈金伟	男	1982	副高级	研究	博士	
53	何知宇	男	1972	副高级	研究	博士	
54	曾广根	男	1977	副高级	教学	博士	
01	Ħ / 1K		1011	田川山沙		以下	博士生导师
55	黄雪飞	男	1985	副高级	研究	博士	2021年6月
							博士生导师
56	杨磊	男	1986	副高级	研究	博士	與工生守师 2022 年 6 月
E 7	꾸고 1. 글	+-	1000	司令加	加克	1 44	2022 中 0 月
57	郑婷	女	1990	副高级	研究	博士	
58	黄利武	男	1984	副高级	研究	博士	
59	严群	女	1971	副高级	教学	博士	

60	杨劼人	男	1984	其它	研究	博士	
61	赵德威	男	1981	其它	研究	博士	
62	王泽高	男	1985	其它	研究	博士	
63	罗江水	男	1981	其它	研究	博士	

注:(1)固定人员:指高等学校聘用的聘期 2 年以上的全职人员,包括教学、技术和管理人员。(2)示范中心职务:示范中心主任、副主任。(3)工作性质:教学、技术、管理、其他。具有多种性质的,选填其中主要工作性质即可。(4)学位:博士、硕士、学士、其他,一般以学位证书为准。(5)备注:是否院士、博士生导师等,获得时间。

(二) 本年度流动人员情况

序号	姓名	性 别	出生年份	职称	国别	工作单位	类型	工作期限
1	Ludwig Cardon	男	1966	正高级	比利时	Ghent University (根特大学)	海外合作	2021.01.01- 2022.12.31
2	Ilya Vorotyntsev	男	1980	正高级		Nizhny Novgorod State Technical University(下哥 罗德国立技术大 学)	海外合作	2021.01.01- 2022.12.31
3	刘述峰	男	1955	其它	中国	广东生益科技股 份有限公司	行业企 业人员	2021.01.01- 2022.12.31
4	王跃林	男	1964	其它	中国	广州汇富研究院 有限公司	行业企 业人员	2021.01.01- 2022.12.31
5	陶云峰	男	1960	其它	中国	成都拓利科技 股份公司	行业企 业人员	2022.01.01- 2022.12.31

注:(1)流动人员包括校内兼职人员、行业企业人员、海内外合作教学人员等。(2)工作期限:在示范中心工作的协议起止时间。

(三) 本年度教学指导委员会人员情况

序号	姓名	性别	出生 年份	职称	职务	国别	工作单位	类型	参会 次数
1	刘天模	男	1953	正高 级	主任 委员	中国	重庆大学	外校 专家	1
2	李子臣	男	1965	正高 级	委员	中国	北京大学	外校 专家	1
3	唐颂超	男	1960	正高 级	委员	中国	华东 理工大学	外校 专家	1
4	巩秀芳	女	1981	副高 级	委员	中国	东汽材料研 究中心	外校 专家	1

5	徐小洪	男	1969	副高级	委员	中国	四川白塔新 联兴陶瓷集 团有限责任 公司	外校 专家	1
6	傅强	男	1963	正高 级	委员	中国	四川大学	校内专家	1
7	刘颖	男	1965	正高 级	委员	中国	四川大学	校内 专家	1

注:(1) 教学指导委员会类型包括校内专家、外校专家、企业专家和外籍 专家。(2) 职务:包括主任委员和委员两类。(3) 参会次数:年度内参加教学 指导委员会会议的次数。

三、人才培养情况

(一) 示范中心实验教学面向所在学校专业及学生情况

序号	面向的	学生人数	人时数		
けち	专业名称	年级	子土八奴	八叶致	
1	材料科学与工程	2019 级、2020 级	346	39001	
2	新能源材料与器件	2018 级、2019 级、 2020 级	201	5677	
3	高分子科学与工程	2019 级、2020 级	600	47338	
合计			1147	92016	

注:面向的本校专业:实验教学内容列入专业人才培养方案的专业。

(二) 实验教学资源情况

实验项目资源总数	101 个
年度开设实验项目数	88个
年度独立设课的实验课程	10门
实验教材总数	4 种
年度新增实验教材	0种

注:(1)实验项目:有实验讲义和既往学生实验报告的实验项目。(2)实验教材:由中心固定人员担任主编、正式出版的实验教材。(3)实验课程:在专业培养方案中独立设置学分的实验课程。

(三) 学生获奖情况

学生获奖人数	24 人
学生发表论文数	15 篇
学生获得专利数	4项

注:(1)学生获奖:指导教师必须是中心固定人员,获奖项目必须是相关项目的全国总决赛以上项目。(2)学生发表论文:必须是在正规出版物上发表,通讯作者或指导老师为中心固定人员。(3)学生获得专利:为已批准专利,中心固定人员为专利共同持有人。

四、教学改革与科学研究情况

(一) 承担教学改革任务及经费

序号	项目/课题名称	文号	负责人	参加人员	起止时间	经费 (万 元)	类别
1	教育部第二批新工科研究 与实践项目/面向未来的材料与化工类高素质人才创新创业能力培养探索与实践	教高厅函 [2020]23 号	刘颖	冉蓉、赵 长生、李 坤#	2021- 2022	7.8	а
2	四川省高等教育人才培养 质量和教学改革项目/"一 流专业建设"背景下重塑 创新人才培养体系的研究 与实践	川教函 [2021]53 2 号	冉蓉	木钱 傅 雪 世 明 跃 强 世 明 跃 强 景 张 ** 、 高 任 丁 杨 秦	2021- 2022	0.6	а

注:此表填写省部级以上教学改革项目/课题。(1)项目/课题名称:项目管理部门下达的有正式文号的最小一级子课题名称。(2)文号:项目管理部门下达文件的文号。(3)负责人:必须是示范中心人员(含固定人员和流动人员)。(4)参加人员:所有参加人员,其中研究生、博士后名字后标注*,非本中心人员名字后标注#。(5)经费:指示范中心本年度实际到账的研究经费。(6)类别:分为 a、b 两类, a 类课题指以示范中心人员为第一负责人的课题; b 类课题指本示范中心协同其他单位研究的课题。

(二) 研究成果

1.专利情况

序 号	专利名称	专利授权号	获准 国别	完成人	类型	类别
1	一种长链尼龙与缩二脲的共聚 物的薄膜及其制备方法	CN113999389B	中国	蔡绪 福	发明 专利	合作完成 一第一人
2	高导电导热石墨材料及其制备 方法	CN113233453B	中国	陈枫	发明 专利	合作完成 一第一人
3	一种功能涂层及其制备方法应 用	CN113637399B	中国	邓华	发明 专利	合作完成 一第一人
4	一种聚合物组合物、柔性自支 撑薄膜及其制备方法和应用	CN112521702B	中国	邓华	发明 专利	合作完成 一第一人
5	一种聚丙烯电容器薄膜及其制 备方法	CN113817268B	中国	傅强	发明 专利	合作完成 一第一人
6	一种成分优化的高强度 RAFM 钢及其热处理工艺	CN113528979B	中国	黄雪飞	发明 专利	合作完成 一第一人
7	一种离型力和熔点可调的非硅 离型剂及其制备方法	CN114014959B	中国	黄亚 江	发明 专利	合作完成 一第一人
8	氧气调控力学性能的生物封闭 材料及其制备方法	CN113698539B	中国	李建 树	发明 专利	合作完成 一第一人
9	一种无溶剂粘结剂及其制备方 法与应用	CN113637399B	中国	李建 树	发明 专利	合作完成 一第一人
10	类病毒状铁氧矿物超疏水涂层 及其制备方法	CN113527933B	中国	李建 树	发明 专利	合作完成 一第一人
11	具备募集 II 型胶原的两性离 子水凝胶及其制备方法和应用	CN113121846B	中国	李建 树	发明 专利	合作完成 一第一人
12	含氟离子的抗污水凝胶及其制 备方法与应用	CN112940182B	中国	李建 树	发明 专利	合作完成 一第一人
13	利用聚多酚材料提升山椒素光 防护稳定性的方法	CN115385817B	中国	李乙 文	发明 专利	合作完成 一第一人
14	一种人造脓黑素纳米材料的制 备方法及应用	CN114316224B	中国	李乙 文	发明 专利	合作完成 一第一人
15	香皂催化黑色素聚合的染发 剂、其制备方法及使用方法	CN114028275B	中国	李乙 文	发明 专利	合作完成 一第一人
16	基于黑色素和花青素的彩色染 发剂及制备方法、使用方法	CN114028253B	中国	李乙 文	发明 专利	合作完成 一第一人
17	人造真菌黑色素材料的制备及 抗氧化应用	CN113527660B	中国	李乙 文	发明 专利	合作完成 一第一人
18	人造真菌黑色素材料的制备及 紫外防护应用	CN113683771B	中国	李乙 文	发明 专利	合作完成 一第一人
19	一种聚多巴胺/茶多酚/纤维素 复合光热凝胶及其制备方法	CN112898627B	中国	李乙 文	发明 专利	合作完成 一第一人
20	一种高电磁屏蔽效能全生物质 基碳气凝胶的制备方法	CN109607509B	中国	李忠 明	发明 专利	合作完成 一第一人
21	一种熔融盐制备 MXenes 材料的方法	CN112194135B	中国	林紫 锋	发明 专利	合作完成 一第一人
22	一种耐高温的高击穿强度本征 型芳纶薄膜及其制备方法	CN113980312B	中国	刘向 阳	发明 专利	合作完成 一第一人
23	一种新型 Fe 基球形屏蔽合金	CN113798487B	中国	刘颖	发明	合作完成

	粉末及其制备方法				专利	一第一人
24	一种钙钛矿结构钒酸盐基电池 负极活性材料	CN112705719B	中国	刘颖	发明 专利	合作完成 一第一人
25	一种基于离子液体低共熔组分 的玻璃温度计	CN114518177B	中国	罗江 水	发明 专利	合作完成 一第一人
26	一种粘附-非粘附一体化水凝 胶及其制备方法和在伤口修复 中的应用	CN113413483B	中国	罗祥 林	发明 专利	合作完成 一第一人
27	耐磨抗氧超高分子量聚乙烯材 料及其制备方法和应用	CN114058102B	中国	王柯	发明 专利	合作完成 一第一人
28	一种单晶二硒化铂薄膜的制备 方法	CN113046827B	中国	王泽 高	发明 专利	合作完成 一第一人
29	一种成分梯度铌酸钾钠基无铅 压电陶瓷及其制备方法	CN113666744B	中国	吴家 刚	发明 专利	合作完成 一第一人
30	一种具有分级多孔结构的高分 子膜及其制备方法和应用	CN113416342B	中国	杨伟	发明 专利	合作完成 一第一人
31	一种多孔聚合物微球及其制备 方法	CN113321840B	中国	杨伟	发明 专利	合作完成 一第一人
32	呼吸系统健康监测方法以及装 置	CN112932457B	中国	杨伟	发明 专利	合作完成 一第一人
33	一种力学性能可转变的动态相 变凝胶及其制备方法	CN112876618B	中国	杨伟	发明 专利	合作完成 一第一人
34	具有光热效应的多级孔骨修复 生物支架材料及制备方法	CN112972776B	中国	杨伟	发明 专利	合作完成 一第一人
35	高分子材料四向或双向拉伸试 验设备	CN111610097B	中国	杨伟	发明 专利	合作完成 一第一人
36	高比表面纳米 W 粉及高比表面纳米 WC 粉的制备方法	CN112705719B	中国	叶金 文	发明 专利	合作完成 一第一人
37	一种多孔掺杂的钛系锂吸附剂 及其制备方法	CN112705156B	中国	张云	发明 专利	合作完成 一第一人
38	一种能够快速吸热的创伤敷料 及其制备方法和应用	CN113289054B	中国	赵伟 锋	发明 专利	合作完成 一第一人
39	基于天然多糖的复合凝胶止血 粉、其制备方法及应用	CN112870430B	中国	赵伟 锋	发明 专利	合作完成 一第一人
40	具有原子催化中心的刺猬状催 化材料及其在制备抗菌药物中 的用途	CN113413919B	中国	赵长生	发明 专利	合作完成 一第一人

注:(1)国内外同内容的专利不得重复统计。(2)专利:批准的发明专利,以证书为准。(3)完成人:必须是示范中心人员(含固定人员和流动人员),多个中心完成人只需填写靠前的一位,排名在类别中体现。(4)类型:其他等同于发明专利的成果,如新药、软件、标准、规范等,在类型栏中标明。(5)类别:分四种,独立完成、合作完成-第一人、合作完成-第二人、合作完成-其他。如果成果全部由示范中心人员完成的则为独立完成。如果成果由示范中心与其他单位合作完成,第一完成人是示范中心人员则为合作完成-第一人;第二完成人是示范中心人员则为合作完成-第二人,第三及以后完成人是示范中心人员则为合作完成-其他。(以下类同)。

2. 发表论文、专著情况

	2. 友衣论义、专者谓优			II=		
序 号	论文或 专著名称	作者	刊物、出版 社名称	卷、期 (或章 节)、页	类型	类别
1	A high dielectric constant copolyamide based on high dipole density	蔡绪福	JOURNAL OF POLYMER RESEARCH	2022,29(3): 106	SCI(E)	合作完成 一第一人
2	Light-weight, low-loading and large- sheet reduced graphene oxide for high- efficiency microwave absorber	陈枫	CARBON	2022,196:1 024-1034	SCI(E)	合作完成 一第一人
3	High-performance capacitive pressure sensors Fabricated by introducing dielectric filler and conductive filler into a porous dielectric layer through a Biomimic strategy	邓华	COMPOSITES SCIENCE AND TECHNOLOGY	2022,227:1 09595	SCI(E)	合作完成 一第一人
4	Recent progress in solar photothermal steam technology for water purification and energy utilization	邓华	CHEMICAL ENGINEERING JOURNAL	2022,448:1 37603	SCI(E)	合作完成 一第一人
5	Fabricating high performance multi- functional hygroelectric generator through a biomimic approach	邓华	NANO ENERGY	2022,98:10 7241	SCI(E)	合作完成 一第一人
6	The preparation of high performance Multi-functional porous sponge through a biomimic coating strategy based on polyurethane dendritic colloids	邓华	CHEMICAL ENGINEERING JOURNAL	2022,438:1 35659	SCI(E)	合作完成 一第一人
7	Polyimide/BaTiO3/NiNWs composites with enhanced dielectric properties	邓华	COMPOSITES COMMUNICATI ONS	2022,35:10 1286	SCI(E)	合作完成 一第一人
8	Multi-layered boron nitride/polyimide high-temperature capacitor dielectric film	邓华	MATERIALS TODAY ENERGY	2022,29:10 1093	SCI(E)	合作完成 一第一人
9	Toolbox for the Processing of Functional Polymer Composites	邓华	NANO-MICRO LETTERS	2022,14(1): 35	SCI(E)	合作完成 一第一人
10	Intrinsically fluorescent polyureas toward conformation-assisted metamorphosis, discoloration and intracellular drug delivery	丁明明	NATURE COMMUNICATI ONS	2022,13(1): 4551	SCI(E)	合作完成 一第一人
11	Manipulating Matrix Crystallization and Impact Toughness of Polylactide/Elastomer Blends via Tailoring Size and Packing Density of Stereocomplex Crystallites Formed at the Interface	傅强	MACROMOLEC ULAR MATERIALS AND ENGINEERING	2022,307(1) :2100698	SCI(E)	合作完成 一第一人
12	High safety and electrochemical performance electrospun para-aramid nanofiber composite separator for lithium-ion battery	傅强	COMPOSITES SCIENCE AND TECHNOLOGY	2022,225:1 09479	SCI(E)	合作完成 一第一人
13	Cellulose/beta-cyclodextrin hydrogel supported metal nanoparticles as recyclable catalysts in the 4-nitrophenol reduction, Suzuki-Miyaura coupling and click reactions	傅强	CELLULOSE	10.1007/s10 570-022- 04928-5	SCI(E)	合作完成 一第一人
14	Largely enhanced dielectric and thermal conductive properties of polypropylene composites by adding mixture of exfoliated boron nitride and liquid metal	傅强	COMPOSITES PART A- APPLIED SCIENCE AND MANUFACTURI NG	2022,161:1 07081	SCI(E)	合作完成 一第一人
15	The effect of filler permittivity on the dielectric properties of polymer-based composites	傅强	COMPOSITES SCIENCE AND TECHNOLOGY	2022,222:1 09342	SCI(E)	合作完成 一第一人
16	The effect of annealing time on morphology, mechanical properties, and	傅强	MATERIALS TODAY	2022,31:10 3321	SCI(E)	合作完成

				1	ı	
	thermal conductivity of HDPE pipes produced by rotational shear		COMMUNICATI ONS			一第一人
	Engineering the Properties of		ONS			
	Transparent Hybrid Coating toward		ACS APPLIED	10.1021/acs		合作完成
17	High Hardness, Excellent Flexibility,	傅强	MATERIALS &	ami.2c1325	SCI(E)	
	and Multifunction		INTERFACES	6		一第一人
	Preparation of Low-k					
	Poly(dicyclopentadiene)		CHEMICAL			A // D
18	nanocomposites with excellent	傅强	ENGINEERING	2022,439:1	SCI(E)	合作完成
10	comprehensive properties by adding	分 1工	JOURNAL	35737	SCI(L)	一第一人
	larger POSS		JOORIVIL			
	Ultrahigh Molecular Weight					^ <i>/k ↔ -</i> ₽
19	Polyethylene Lamellar-Thin Framework	傅强	ADVANCED	2022,21079	SCI(E)	合作完成
	on Square Meter Scale	10.074	MATERIALS	41	SCI(L)	一第一人
	On-line ascertain the processing fluidity					入 佐宁卍
20	of concentrated poly(vinyl alcohol)	傅强	POLYMER	2022,243:1	SCI(E)	合作完成
	aqueous solutions	14 42		24608	~ - (_)	一第一人
	•		MACROMOLEC			
	Effect of Plasticization on Stretching	H- 4-1	ULAR RAPID	2022,22002	a ar (T)	合作完成
21	Stability of Poly(Vinyl Alcohol) Films:	傅强	COMMUNICATI	96	SCI(E)	一第一人
	A Case Study Using Glycerol and Water		ONS			713 /
	Pursuing Phase Transitions of a		CHEMICAL			A 22 15
22	Concentrated Polymer Solution by In	傅强	RESEARCH IN	2022,35(10)	SCI(E)	合作完成
22	Situ Fluorescence Measurements Based	1年7里	TOXICOLOGY	:1631-1633	SCI(E)	一第一人
	On Aggregation-Induced Emission					21v / V
	Pursuing Phase Transitions of a		JOURNAL OF			^ <i>/k +> -</i> 12
23	Concentrated Polymer Solution by In	傅强	PHYSICAL	2022,13(42)	SCI(E)	合作完成
23	Situ Fluorescence Measurements Based	14.77	CHEMISTRY	:9855-9861	SCI(L)	一第一人
	On Aggregation-Induced Emission		LETTERS			
	D-Mannitol/Graphene Phase-Change		A GG A DDI HED	2022 14/24		
24	Composites with Structured	/井 コロ	ACS APPLIED	2022,14(34)	COL(E)	合作完成
24	Conformation and Thermal Pathways	傅强	MATERIALS &	:38981-	SCI(E)	一第一人
	Allow Durable Solar-Thermal-Electric Conversion and Electricity Output		INTERFACES	38989		>IV
	3D printing of all-regenerated cellulose					A //
25	material with truly 3D configuration:	傅强	CARBOHYDRA	2022,294:1	SCI(E)	合作完成
23	The critical role of cellulose microfiber	田田	TE POLYMERS	19784	SCI(L)	一第一人
	Bifunctional Liquid Metals Allow					
	Electrical Insulating Phase Change	H- 4-1	NANO-MICRO	2022,14(1):	a ar (T)	合作完成
26	Materials to Dual-Mode Thermal	傅强	LETTERS	202	SCI(E)	一第一人
	Manage the Li-Ion Batteries					カ 八
	A Universal Mechanochemistry Allows		CMALI	2022 ((7)-2		合作完成
27	On-Demand Synthesis of Stable and	傅强	SMALL	2022,6(7):2 200246	SCI(E)	
	Processable Liquid Metal Composites		METHODS	200240		一第一人
	A thermally conductive interface					A /k + -1
28	material with tremendous and reversible	傅强	MATERIALS	2022,9(6):1	SCI(E)	合作完成
20	surface adhesion promises durable	14.12	HORIZONS	690-1699	SCI(L)	一第一人
	cross-interface heat conduction					
	Tropocollagen-Inspired Hierarchical					人 佐亭卍
29	Spiral Structure of Organic Fibers in	傅强	ADVANCED	2022,34(40)	SCI(E)	合作完成
	Epoxy Bulk for 3D High Thermal		MATERIALS	:2206088		一第一人
	Conductivity					
	Knittable Composite Fiber Allows		ADVANCED	2022 22(20)		合作完成
30	Constant and Tremendous Self-	傅强	FUNCTIONAL	2022,32(30) :2203666	SCI(E)	
	Powering Based on the Transpiration- Driven Electrokinetic Effect		MATERIALS	.2203000		一第一人
	Supercritical carbon dioxide foaming for		JOURNAL OF			A // D
31	ultra-low dielectric loss perfluorinated	李光宪	CO2	2022,65:10	SCI(E)	合作完成
51	foam	テル元	UTILIZATION	2226	SCI(E)	一第一人
	Three-Dimensional Polymer Nanofiber		ACS APPLIED			
32	Structures for Liquid Contamination	李光宪	NANO	2022,5(4):5	SCI(E)	合作完成
	Adsorption	1 / 1 / 1	MATERIALS	640-5651	()	一第一人
	Using a Supercritical Fluid-Assisted		INDUSTRIAL &	2022 51 51		人 佐宁世
33	Thin Cell Wall Stretching-Defoaming	李光宪	ENGINEERING	2022,61(10)	SCI(E)	合作完成
	Method to Enhance the Nanofiller		CHEMISTRY	:3647-3659	` ′	一第一人

	Dispersion, EMI Shielding, and Thermal		RESEARCH			
	Conduction Property of CNF/PVDF					
	Nanocomposites Construction of a Two-Dimensional					
34	Response Network in Three- Dimensional Composites to Dramatically Enhance Sensor Sensitivity: A Simple, Feasible, and Green Regulating Strategy	李光宪	INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH	2022,61(23) :8069-8080	SCI(E)	合作完成 一第一人
35	Graphene-Embedded Hybrid Network Structure to Render Olefin Block Copolymer Foams with High Compression Performance	李光宪	INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH	2022,61(27) :9735-9744	SCI(E)	合作完成 一第一人
36	Influence of ionic liquids on the chain dynamics and enthalpy relaxation of poly(methyl methacrylate)	李光宪	PHYSICAL CHEMISTRY CHEMICAL PHYSICS	2022,24(26) :16388- 16396	SCI(E)	合作完成 一第一人
37	Dynamics of Poly(methyl methacrylate) in Ionic Liquids with Different Concentration and Cationic Structures	李光宪	CHINESE JOURNAL OF POLYMER SCIENCE	10.1007/s10 118-022- 2840-z	SCI(E)	合作完成 一第一人
38	Detection of the Destruction Mechanism of Perfluorinated Elastomer (FFKM) Network under Thermo-oxidative Aging Conditions	李光宪	CHINESE JOURNAL OF POLYMER SCIENCE	2022,40(5): 504-514	SCI(E)	合作完成 一第一人
39	Chain Dynamics and Crystallization Behavior of Poly(ethylene oxide) in Imidazolium-Based Ionic Liquids with Different Cationic Structures	李光宪	MACROMOLEC ULES	2022,55(11) :4589-4599	SCI(E)	合作完成 一第一人
40	Recent advances on gelatin methacrylate hydrogels with controlled microstructures for tissue engineering	李建树	INTERNATION AL JOURNAL OF BIOLOGICAL MACROMOLEC ULES	2022,221:9 1-107	SCI(E)	合作完成 一第一人
41	Toward High Sensitivity: Perspective on Colorimetric Photonic Sensors	李建树	ANALYTICAL CHEMISTRY	10.1021/acs .analchem.2 c01804	SCI(E)	合作完成 一第一人
42	Recent Advances of Self-Healing Polymer Materials via Supramolecular Forces for Biomedical Applications	李建树	BIOMACROMO LECULES	2022,23(3): 641-660	SCI(E)	合作完成 一第一人
43	Keratin-based wound dressings: From waste to wealth	李建树	INTERNATION AL JOURNAL OF BIOLOGICAL MACROMOLEC ULES	2022,211:1 83-197	SCI(E)	合作完成 一第一人
44	Invisible assassin coated on dental appliances for on-demand capturing and killing of cariogenic bacteria	李建树	COLLOIDS AND SURFACES B- BIOINTERFACE S	2022,217:1 12696	SCI(E)	合作完成 一第一人
45	Biomineralization-Inspired Intermediate Precursor for the Controllable Gelation of Polyphenol-Macromolecule Hydrogels	李建树	ACS APPLIED MATERIALS & INTERFACES	10.1021/acs ami.2c1506 8	SCI(E)	合作完成 一第一人
46	Chloroplast-inspired Scaffold for Infected Bone Defect Therapy: Towards Stable Photothermal Properties and Self- Defensive Functionality	李建树	ADVANCED SCIENCE	2022,9(31): 2204535	SCI(E)	合作完成 一第一人
47	Dual crosslinking hydrogels with tunable injectability and stability for bone repair	李建树	JOURNAL OF MATERIALS CHEMISTRY B	2022,10(23) :4386-4394	SCI(E)	合作完成 一第一人
48	An instant, repeatable and universal supramolecular adhesive based on natural small molecules for dry/wet	李建树	CHEMICAL ENGINEERING JOURNAL	2022,442:1 36206	SCI(E)	合作完成 一第一人

	environments					
49	Dual crosslinking hydrogels with tunable injectability and stability for bone repair (vol 10, pg 4386, 2022)	李建树	JOURNAL OF MATERIALS CHEMISTRY B	2022,10(32) :6237-6237	SCI(E)	合作完成 一第一人
50	Cartilage-Inspired Hydrogel with Mechanical Adaptability, Controllable Lubrication, and Inflammation Regulation Abilities	李建树	ACS APPLIED MATERIALS & INTERFACES	2022,14(23) :27360- 27370	SCI(E)	合作完成 一第一人
51	Barnacle-Inspired robust and aesthetic Janus patch with instinctive wet adhesive for oral ulcer treatment	李建树	CHEMICAL ENGINEERING JOURNAL	2022,444:1 36580	SCI(E)	合作完成 一第一人
52	Ethanol-Induced Responsive Behavior of Natural Polysaccharide Hydrogels	李建树	INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH	2022,61(35) :13145- 13153	SCI(E)	合作完成 一第一人
53	Gellan gum modified hyaluronic acid hydrogels as viscosupplements with lubrication maintenance and enzymatic resistance	李建树	JOURNAL OF MATERIALS CHEMISTRY B	2022,10(23) :4479-4490	SCI(E)	合作完成 一第一人
54	Recent advances of zwitterionic-based topological polymers for biomedical applications	李建树	JOURNAL OF MATERIALS CHEMISTRY B	2022,10(14) :2338-2356	SCI(E)	合作完成 一第一人
55	Chitosan-Based Scaffolds for Facilitated Endogenous Bone Re-Generation	李建树	PHARMACEUTI CALS	2022,15(8): 1023	SCI(E)	合作完成 一第一人
56	Virus-Like Iron Oxide Minerals Inspired by Magnetotactic Bacteria: Towards an Outstanding Photothermal Superhydrophobic Platform on Universal Substrates	李建树	ADVANCED FUNCTIONAL MATERIALS	2022,32(29) :2201795	SCI(E)	合作完成 一第一人
57	Synthetic fungal melanin nanoparticles with excellent antioxidative property	李乙文	GIANT	2022,12:10 0120	SCI(E)	合作完成 一第一人
58	Propolis inspired sunscreens for efficient UV-protection and skin barrier maintenance	李乙文	NANO RESEARCH	2022,15(9): 8237-8246	SCI(E)	合作完成 一第一人
59	Smart Internal Bio-Glues	李乙文	ADVANCED SCIENCE	2022,9(27): 2203587	SCI(E)	合作完成 一第一人
60	Polyphenolic sunscreens for photoprotection	李乙文	GREEN CHEMISTRY	2022,24(9): 3605-3622	SCI(E)	合作完成 一第一人
61	Versatile polyphenolic platforms in regulating cell biology	李乙文	CHEMICAL SOCIETY REVIEWS	2022,51(10) :4175-4198	SCI(E)	合作完成 一第一人
62	Molecular Hyperpolarization-Directed Photothermally Enhanced Melanin- Inspired Polymers	李乙文	MACROMOLEC ULES	10.1021/acs .macromol. 2c01440	SCI(E)	合作完成 一第一人
63	Boosting the Optical Absorption of Melanin-like Polymers	李乙文	MACROMOLEC ULES	2022,55(9): 3493-3501	SCI(E)	合作完成 一第一人
64	Fabrication of Functional Polycatechol Nanoparticles	李乙文	ACS MACRO LETTERS	2022,11(2): 251-256	SCI(E)	合作完成 一第一人
65	Robust and multifunctional natural polyphenolic composites for water remediation	李乙文	MATERIALS HORIZONS	2022,9(10): 2496-2517	SCI(E)	合作完成 一第一人
66	Size Regulation of Polydopamine Nanoparticles by Boronic Acid and Lewis Base	李乙文	MACROMOLEC ULAR RAPID COMMUNICATI ONS	2022,21009 16	SCI(E)	合作完成 一第一人
67	Layer-by-Layer Assembled Smart Antibacterial Coatings via Mussel- Inspired Polymerization and Dynamic Covalent Chemistry	李乙文	ADVANCED HEALTHCARE MATERIALS	2022,11(12) :2200112	SCI(E)	合作完成 一第一人

68	Interfacial Banded Transcrystallization of Polyoxymethylene/Poly(butylene succinate) Blends Induced by the Polyamide 6 Fiber	李忠明	CHINESE JOURNAL OF POLYMER SCIENCE	2022,40(4): 394-402	SCI(E)	合作完成 一第一人
69	Promoted Formation of alpha Crystals in the Polymorph Selection of Syndiotatic Polystyrene under the Coupling of Pressure, Flow, and Temperature	李忠明	MACROMOLEC ULES	2022,55(12) :5094-5103	SCI(E)	合作完成 一第一人
70	Reorganization of Hydrogen Bonding in Biobased Polyamide 5,13 under the Thermo-Mechanical Field: Hierarchical Microstructure Evolution and Achieving Excellent Mechanical Performance	李忠明	BIOMACROMO LECULES	2022,23(9): 3990-4003	SCI(E)	合作完成 一第一人
71	Enhanced Dielectric and Ferroelectric Properties of Poly(vinylidene fluoride) through Annealing Oriented Crystallites under High Pressure	李忠明	MACROMOLEC ULES	2022,55(6): 20142027	SCI(E)	合作完成 一第一人
72	CuS-PNIPAm nanoparticles with the ability to initiatively capture bacteria for photothermal treatment of infected skin	罗祥林	REGENERATIV E BIOMATERIAL S	2022,9:rbac 026	SCI(E)	合作完成 一第一人
73	Rational Design of Polyphosphorylcholine-Based Micelles for Superior Anti-Biofilm Activity	罗祥林	MACROMOLEC ULAR MATERIALS AND ENGINEERING	2022,307(4) :2100806	SCI(E)	合作完成 一第一人
74	Near-infrared light-triggered mild- temperature photothermal effect of nanodiamond with functional groups	罗祥林	DIAMOND AND RELATED MATERIALS	2022,123:1 08831	SCI(E)	合作完成 一第一人
75	pi-Conjugated Copper Phthalocyanine Nanoparticles as Highly Sensitive Sensor for Colorimetric Detection of Biomarkers	罗祥林	CHEMISTRY-A EUROPEAN JOURNAL	2022,28(38) :e20210459 1	SCI(E)	合作完成 一第一人
76	A biomass hybrid hydrogel with hierarchical porous structure for efficient solar steam generation	冉蓉	SOLAR ENERGY MATERIALS AND SOLAR CELLS	2022,242:1 11742	SCI(E)	合作完成 一第一人
77	One-step preparation of hydroxyapatite- loaded magnetic Polycaprolactone hollow microspheres for malachite green adsorption by Pickering emulsion template method	冉蓉	COLLOIDS AND SURFACES A- PHYSICOCHEM ICAL AND ENGINEERING ASPECTS	2022,639:1 28347	SCI(E)	合作完成 一第一人
78	Direct Chemical Oxidative Polymerization of Polymelamine and its Copolymerization with Aniline for Hydrogel Supercapacitor Electrodes	冉蓉	JOURNAL OF THE ELECTROCHE MICAL SOCIETY	2022,169(1 0):100543	SCI(E)	合作完成 一第一人
79	Copolymerization of Aniline, Melamine and p-Phenylenediamine for Enhanced Pseudocapacitance Hydrogel Supercapacitor Electrodes	冉蓉	MACROMOLEC ULAR MATERIALS AND ENGINEERING	2022,307(9) :2200180	SCI(E)	合作完成 一第一人
80	Silver nanoparticles prepared by solid- state redox route from HEC for conductive, long-term durable and recycling artificial soft electronics (vol 229, 123974, 2021)	冉蓉	POLYMER	2022,242:1 24615	SCI(E)	合作完成 一第一人
81	Strong Tough Conductive Hydrogels via the Synergy of Ion-Induced Cross- Linking and Salting-Out	冉蓉	ADVANCED FUNCTIONAL MATERIALS	2022,32(39) :2204823	SCI(E)	合作完成 一第一人
82	Influence of crystallinity on wear behavior of ultrahigh molecular weight polyethylene and the wear mechanism	王柯	JOURNAL OF POLYMER ENGINEERING	2022,42(10) :995-1003	SCI(E)	合作完成 一第一人

83	Vitrimeric Polylactide by Two-step Alcoholysis and Transesterification during Reactive Processing for	杨伟	ACS APPLIED MATERIALS &	10.1021/acs ami.2c1559	SCI(E)	合作完成 一第一人
	Enhanced Melt Strength		INTERFACES	5		一
84	In situ interfacial engineering enabled mechanically adaptive and highly stretchable liquid metal conductor	杨伟	POLYMER	2022,240:1 24482	SCI(E)	合作完成 一第一人
85	Self-Sensing Actuators Based on a Stiffness Variable Reversible Shape Memory Polymer Enabled by a Phase Change Material	杨伟	ACS APPLIED MATERIALS & INTERFACES	2022,14(19) :22521- 22530	SCI(E)	合作完成 一第一人
86	Engineering MOFs-Derived Nanoarchitectures with Efficient Polysulfides Catalytic Sites for Advanced Li-S Batteries	杨伟	ADVANCED MATERIALS TECHNOLOGIE S	2022,22002	SCI(E)	合作完成 一第一人
87	In-situ construction of high-modulus nanospheres on elastomer fibers for linearity-tunable strain sensing	杨伟	CHEMICAL ENGINEERING JOURNAL	2022,431:1 33488	SCI(E)	合作完成 一第一人
88	Janus and Heteromodulus Elastomeric Fiber Mats Feature Regulable Stress Redistribution for Boosted Strain Sensing Performance	杨伟	ACS NANO	10.1021/acs nano.2c064 82	SCI(E)	合作完成 一第一人
89	Structure-regenerated silk fibroin with boosted piezoelectricity for disposable and biodegradable oral healthcare device	杨伟	NANO ENERGY	2022,103:1 07787	SCI(E)	合作完成 一第一人
90	Phosphorus modulated porous CeO 2 nanocrystallines for accelerated polysulfide catalysis in advanced Li-S batteries	杨伟	JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY	2022,131:2 12-220	SCI(E)	合作完成 一第一人
91	A Wave-Driven Piezoelectrical Film for Interfacial Steam Generation: Beyond the Limitation of Hydrogel	杨伟	ADVANCED SCIENCE	10.1002/ad vs.2022041 87	SCI(E)	合作完成 一第一人
92	A Wave-Driven Piezoelectric Solar Evaporator for Water Purification	杨伟	ADVANCED ENERGY MATERIALS	2022,12(21) :2200087	SCI(E)	合作完成 一第一人
93	Mechanistically Scoping Cell-Free and Cell-Dependent Artificial Scaffolds in Rebuilding Skeletal and Dental Hard Tissues	杨伟	ADVANCED MATERIALS	2022:21079 22	SCI(E)	合作完成 一第一人
94	Flexible phase change hydrogels for mid-/low-temperature infrared stealth	杨伟	CHEMICAL ENGINEERING JOURNAL	2022,446:1 37463	SCI(E)	合作完成 一第一人
95	Exploring Next-Generation Functional Organic Phase Change Composites	杨伟	ADVANCED FUNCTIONAL MATERIALS	2022,32(28) :2200792	SCI(E)	合作完成 一第一人
96	High-Performance Flexible Sulfur Cathodes with Robust Electrode Skeletons Built by a Hierarchical Self- Assembling Slurry	杨伟	ADVANCED SCIENCE	2022,9(26): 2201881	SCI(E)	合作完成 一第一人
97	Ultraporous Polyquaternium- Carboxylated Chitosan Composite Hydrogel Spheres with Anticoagulant, Antibacterial, and Rapid Endotoxin Removal Profiles for Sepsis Treatment	赵伟锋	BIOMACROMO LECULES	2022,23(9): 3728-3742	SCI(E)	合作完成 一第一人
98	Modulating Bond Interactions and Interface Microenvironments between Polysulfide and Catalysts toward Advanced Metal-Sulfur Batteries	赵长生	ADVANCED FUNCTIONAL MATERIALS	2022,32(45) :2207021	SCI(E)	合作完成 一第一人
99	Interfacial Atom-Substitution Engineered Transition-Metal Hydroxide Nanofibers with High-Valence Fe for Efficient Electrochemical Water Oxidation	赵长生	ANGEWANDTE CHEMIE- INTERNATION AL EDITION	2022,61(13) :e20211533	SCI(E)	合作完成 一第一人
100	Emerging 2D Materials for	赵长生	SMALL	2022,18(17)	SCI(E)	合作完成

				1		
	Electrocatalytic Applications: Synthesis, Multifaceted Nanostructures, and Catalytic Center Design			:2105831		一第一人
101	A cell retrievable strategy for harvesting extracellular matrix as active biointerface	赵长生	JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY	2022,130:4 4-52	SCI(E)	合作完成 一第一人
102	Extracorporeal hemoperfusion therapy for sepsis: Multi-lamellar microspheres towards cascade endotoxin removal and broad-spectrum radical eliminating	赵长生	CHEMICAL ENGINEERING JOURNAL	2022,444:1 36499	SCI(E)	合作完成 一第一人
103	Improved Cooling Performance of Hydrogel Wound Dressings via Integrating Thermal Conductivity and Heat Storage Capacity for Burn Therapy	赵长生	BIOMACROMO LECULES	2022,23(3): 889-902	SCI(E)	合作完成 一第一人
104	Anticoagulant biomimetic consecutive gas exchange network for advanced artificial lung membrane	赵长生	JOURNAL OF MEMBRANE SCIENCE	2022,653:1 20502	SCI(E)	合作完成 一第一人
105	A photo-crosslinkablestomatocyte nanomotor with excellent stability for repeated autonomous motion	赵长生	SOFT MATTER	2022,18(17) :3308-3312	SCI(E)	合作完成 一第一人
106	Alloyed nanostructures integrated metal- phenolic nanoplatform for synergistic wound disinfection and revascularization	赵长生	BIOACTIVE MATERIALS	2022,16:95- 106	SCI(E)	合作完成 一第一人
107	Long-term, synergistic and high- efficient antibacterial polyacrylonitrile nanofibrous membrane prepared by one- pot electrospinning process	赵长生	JOURNAL OF COLLOID AND INTERFACE SCIENCE	2022,609:7 18-733	SCI(E)	合作完成 一第一人
108	A rapid-triggered approach towards antibacterial hydrogel wound dressing with synergic photothermal and sterilization profiles	赵长生	BIOMATERIAL S ADVANCES	2022,138:2 12873	SCI(E)	合作完成 一第一人
109	1+1 > 2: Highly efficient removal of organic pollutants by composite nanofibrous membrane based on the synergistic effect of adsorption and photocatalysis	赵长生	JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY	2022,124:7 6-85	SCI(E)	合作完成 一第一人
110	Surface engineering of low-fouling and hemocompatible polyether sulfone membranes via in-situ ring-opening reaction (vol 581, pg 373, 2019)	赵长生	JOURNAL OF MEMBRANE SCIENCE	2022,647:1 20302	SCI(E)	合作完成 一第一人
111	Immune-stealth carboxymethyl chitosan-based nanomaterials for magnetic resonance imaging-guided photothermal therapy	赵长生	CARBOHYDRA TE POLYMERS	2022,288:1 19382	SCI(E)	合作完成 一第一人
112	Dually-Thermoresponsive Hydrogel with Shape Adaptability and Synergetic Bacterial Elimination in the Full Course of Wound Healing	赵长生	ADVANCED HEALTHCARE MATERIALS	2022,11(18) :2201049	SCI(E)	合作完成 一第一人
113	A Straightforward Approach towards Antibacterial and Anti-Inflammatory Multifunctional Nanofiber Membranes with Sustained Drug Release Profiles	赵长生	MACROMOLEC ULAR BIOSCIENCE	2022,22(11) :2200150	SCI(E)	合作完成 一第一人
114	Deciphering the atomic-scale structural origin for large dynamic electromechanical response in lead-free Bi0.5Na0.5TiO3-based relaxor ferroelectrics	吴家刚	Nature Communications	2022,13,63	SCI(E)	合作完成 一第一人
115	Compositionally Graded KNN-Based Multilayer Composite with Excellent Piezoelectric Temperature Stability	吴家刚	Advanced Materials	2022,34,21 09175	SCI(E)	合作完成 一第一人
116	Boosting the lithium-ion storage performance of perovskite SrxVO3-δ via Sr cation and O anion deficient	刘颖	Science Bulletin	2022,67(22) ,2305-2315	SCI(E)	合作完成 一第一人

	engineering					
117	Highly Tunable, Broadband, and Negative Photoresponse MoS2 Photodetector Driven by Ion-Gel Gate Dielectrics	王泽高	ACS Applied Materials & Interfaces	2022,14:32 412-32419	SCI(E)	合作完成 一第一人
118	Revealing Superoxide-Induced Degradation in Lead-free Tin Perovskite Solar Cells	赵德威	Energy & Environmental Science	2022,15:52 74-5283	SCI(E)	合作完成 一第一人
119	High-Performance Flexible All- Perovskite Tandem Solar Cells with Reduced VOC-Deficit in Wide-Bandgap Subcell	赵德威	Advanced Energy Materials	2022,12:22 02438	SCI(E)	合作完成 一第一人
120	A universal close-space annealing strategy towards high-quality perovskite absorbers enabling efficient all- perovskite tandem solar cells	赵德威	Nature Energy	2022,7:744 - 753	SCI(E)	合作完成一 第一人
121	电子陶瓷材料与器件	吴家刚	化学工业出版社	301 页	中文 专著	主编

注:(1)论文、专著均限于教学研究、学术期刊论文或专著,一般文献综述、一般教材及会议论文不在此填报。请将有示范中心人员(含固定人员和流动人员)署名的论文、专著依次以国外刊物、国内重要刊物,外文专著、中文专著为序分别填报。(2)类型:SCI(E)收录论文、SSCI收录论文、A&HCL收录论文、EI Compendex收录论文、北京大学中文核心期刊要目收录论文、南京大学中文社会科学引文索引期刊收录论文(CSSCI)、中国科学院中国科学引文数据库期刊收录论文(CSCD)、外文专著、中文专著;国际会议论文集论文不予统计,可对国内发行的英文版学术期刊论文进行填报,但不得与中文版期刊同内容的论文重复。(3)外文专著:正式出版的学术著作。(4)中文专著:正式出版的学术著作,不包括译著、实验室年报、论文集等。(5)作者:多个作者只需填写中心成员靠前的一位,排名在类别中体现。

3. 仪器设备的研制和改装情况

序号	仪器设 备名称	自制或改装	开发的功能和用途 (限 100 字以内)	研究成果 (限 100 字以 内)	推广和应用 的高校
1	电子万能拉 力机	改装	改装原有夹具,加持 原有 更 更 更 世 起 更 世 起 更 世 起 进 起 世 起 是 世 起 进 是 世 是 过 是 世 是 之 是 过 是 之 是 之 是 之 是 之 是 之 是 之 是 是 是 是	提升设备的共享使用率和机时数,产出多篇科研成果。	校内同种设备中推广使用

注:(1)自制:实验室自行研制的仪器设备。(2)改装:对购置的仪器设备进行改装,赋予其新的功能和用途。(3)研究成果:用新研制或改装的仪器设备进行研究的创新性成果,列举1-2项。

4.其它成果情况

67 I/a	₩ ₁ , □
1	<u></u>
H 13.	<u> </u>
	/A.—

国内会议论文数	40 篇
国际会议论文数	14 篇
国内一般刊物发表论文数	8篇
省部委奖数	3 项
其它奖数	8 项

注: 国内一般刊物: 除"(二)2"以外的其他国内刊物, 只填汇总数量。

五、信息化建设、开放运行和示范辐射情况

(一) 信息化建设情况

中心网址	http://mse.lab.scu.edu.cn/		
中心网址年度访问总量	17179 人次		
虚拟仿真实验教学项目	4 项		

(二) 开放运行和示范辐射情况

1.参加示范中心联席会活动情况

所在示范中心联席会学科组名称	材料/纺织服装		
参加活动的人次数	9人次		

2. 承办大型会议情况

序号	会议名称	主办单位名称	会议主席	参加 人数	时间	类型
1	四川省材料类专业 教学指导委员会 2022年第一次工作 会议	四川大学高分 子科学与工程 学院	傅强	35	2022.07.08	区域 性
2	材料科学与工程国家级实验教学示范中心(四川大学)教指导委员会议	材料科学与工程国家级实验教学示范中心(四川大学)	赵长生	10	2022.12.14	区域性

注:主办或协办由主管部门、一级学会或示范中心联席会批准的会议。请

按全球性、区域性、双边性、全国性等排序,并在类型栏中标明。

3.参加大型会议情况

序号	大会报告名称	报告人	会议名称	时间	地点
1	Electrical Property Modification and Physical Mechanism Investigation of KNN- based Lead-free Piezoceramics	郑婷	Electronic Materials and Applications 2022	2022.01 .19-21	线上
2	Gate-tunable 2D Materials based Photodetector	王泽高	2022 International Conference on Frontier Materials	2022.05 .27-31	线上
3	电化学微晶天平在超级 电容器研究中的应用	林紫锋	The 3rd International Conference on Electrochemical Energy Systems	2022.7. 27-30	银川
4	Manipulate the Photoelectrical Effect for Tunable Photodetector	王泽高	IEEE International Conference on Manipulation, Manufacturingand Measurement on the Nanoscale	2022.08 .08-12	天津
5	Molten salt synthesis of MXene and electrochemical lithium storage study	林紫锋	4th International Conference on MXenes	2022.8. 5-8	南京
6	Advances in KNN-based Lead-free Piezoelectric Ceramics	吴家刚	The 12th International Conference on High- Performance Ceramics	2022.8. 14-17	苏州
7	Lead-free piezoelectric ceramics: property and application	吴家刚	第一届环境友好能源 材料国家重点实验室 国际学术研讨会	2022.09 .15-17	绵阳
8	原位电化学微晶天平研究二维 MXene 材料赝电容机理	林紫锋	第八届全国储能科学 与技术大会	2022.11 .4-6	长春

注: 大会报告: 指特邀报告。

4.承办竞赛情况

序号	竞赛名称	竞赛 级别	参赛 人数	负责人	职称	起止时间	总经费 (万元)
1	"挑战杯"四川 大学学生课外 学术科技节活 动之材料设计	校级	124	余鹏飞	中级	2022.4.10	9

大赛			

注: 竞赛级别按国家级、省级、校级设立排序。

5. 开展科普活动情况

序号	活动开展时间	参加 人数	活动报道网址
1	2022.04.23	60	https://m.x-mol.com/groups/wei/events/27506 第二届儿童科普活动
2	2022.06.24	152	https://cpse.scu.edu.cn/info/1161/5865.htm 2022 年高分子科学优秀大学生暑期云夏令营

6. 承办培训情况

序号	培训项目名称	培训人数	负责人	职称	起止时间	总经费 (万元)
1	透射电镜技能 培训	31	周天楠	副高级	2022. 04. 10	2
2	扫描电镜应用 培训	24	何超	副高级	2022. 6. 1 4	1.5
3	显微红外培训	17	赵凌	中级	2022. 7. 2	1

注:培训项目以正式文件为准,培训人数以签到表为准。

(三)安全工作情况

安全教育	培训情况	2230 人次			
是否发生安全责任事故					
伤亡人数	汝(人)	未发生			
伤	È				
		√			

注:安全责任事故以所在高校发布的安全责任事故通报文件为准。如未发生安全责任事故,请在其下方表格打钩。如发生安全责任事故,请说明伤亡人数。